Particle Swarm Optimization applied to Multi-Reservoir Operating Policy in Inter-Basin Water Transfer System
Oussama LAASSILA, Dirss OUAZAR, Ahmed BOUZIANE, Moulay Driss HASNAOUI
Abstract
For many centuries, Inter-Basin Water Transfer (IBWT) projects have been adopted to mitigate the problem of the heterogeneous distribution of water resources. Thus, water transfers are usually carried out between reservoirs having surplus water toward deficitary reservoirs. Therefore, operating rules for managing those complex systems must taking into account satisfaction of local demand for donor reservoirs, then ensure an optimal water transfer that helps to cover demands in deficitary areas, all in avoiding unnecessary water spills. In view of this, the return to optimization methods is essential in order to elaborate an optimal model allowing to achieve all these objectives. This paper presents an overview of optimizing multi-reservoir operating rules in IBWT system using the heuristic Particle Swarm Optimization (PSO). The main aim of this study is to develop a Simulation-Optimization model in order to optimize operation of North-to-South Inter-Basin Water Transfer (NS-IBWT) project in Morocco.
Keywords
References
[1] Kummu M., Ward P.J., H. de Moel and Varis O., (2010). Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia. Environ Res Lett, 5 (2010), p. 034006. DOI:10.1088/1748-9326/5/3/034006.
[2] Dahal V., Shakya N. M., Bhattarai R., (2016). Estimating the impact of climate change on water availability in Bagmati Basin, Nepal. Environ Process 3:1–17.
[3] Abdulbaki D., Al-Hindi M., Yassine A., Abou Najm M., (2017). An optimization model for the allocation of water resources. Journal of Cleaner Production 164 (2017) 994e1006.
[4] Anzab N. R., Mousavi S. J., Rousta B. A. and Kim J. H., (2016). Simulation Optimization for Optimal Sizing of Water Transfer Systems. p 365-376. DOI: 10.1007/978-3-662-47926-1_35.
[5] Hınçal O., Sakarya A., and Ger A., M., (2011). Optimization of Multireservoir Systems by Genetic Algorithm. Water Resour Manage, 25:1465–1487. DOI 10.1007/s11269-010-9755-0.
[6] Gu W., Shao D., Tan X., Shu C. and Wu Z., (2017). Simulation and Optimization of Multi-Reservoir Operation in Inter-Basin Water Transfer System. Water Resour Manage. DOI 10.1007/s11269-017-1675-9.
[7] Ghassemi F. and Ian White I., (2007). Inter-Basin Water Transfer: Case Studies from Australia, United States, Canada, China and India (International Hydrology Series). Australian National University.
[8] Gupta P and Zaag V., (2008). Interbasin water transfers and integrated water resources management: Where engineering, science and politics interlock. Physics and Chemistry of the Earth 33 (2008) 28–40.
[9] Zhu X., Zhang C., Yin J. et al., (2014). Optimization of water diversion based on reservoir operating rules: analysis of the Biliu River reservoir, China. J Hydrol Eng 19(2):411–421.
[10] Minard A. (2015). Inter-basin Water Transfers. Water Matters! pp. 19-1 – 19-10. http://uttoncenter.unm.edu/pdfs/water-matters-2015/19_Inter-basin_Water_Transfers.pdf.
[11] Zhuang, W., (2016). Eco-environmental impact of inter-basin water transfer projects: a review. Environ Sci Pollut Res, 23:12867–12879. DOI 10.1007/s11356-016-6854-3.
[12] Wan W., Guo X., Lei X., Jiang Y., Wang H., (2017). A Novel Optimization Method for Multi-Reservoir Operation Policy Derivation in Complex Inter-Basin Water Transfer System. Water Resour Manage. DOI 10.1007/s11269-017-1735-1.
[13] Oliveira R. and Loucks D. P., (1997). Operating rules for multireservoir systems. Water Resources Research, VOL. 33, N°. 4, pages 839-852.
[14] Lin M. N. and Rutten M., (2016). Optimal Operation of a Network of Multi-Purpose Reservoir: A Review. 12th International Conference on Hydro-informatics, HIC.
[15] Wei C. C, Hsu N. S., (2008). Derived operating rules for a reservoir operation system: comparison of decision trees, neural decision trees and fuzzy decision trees. Water Resour Res 44: W02428.
[16] Soleimani S, Bozorg-Haddad O, Loaiciga H., (2016). Reservoir operation rules with uncertainties in reservoir inflow and agricultural demand derived with stochastic dynamic programming. J Irrig Drain Eng 142(11): 04016046.
[17] El Harraki W., Driss O., Bouziane A. and Hasnaoui M. D., (2016). Genetic Algorithm applied to reservoir operation optimization with emphasis on the Moroccan context. Hydraulic Systems Analysis Laboratory. Mohammadia School of Engineers-EMI-Rabat, Morocco.
[18] Loucks DP, Van Beek E, Stedinger JR, Dijkman JP, Villars MT. (2005). Water resources systems planning and management: an introduction to methods, models and applications: Paris: UNESCO.
[19] Jetmarova H., M., Sultanova N., Savic D., (2017). Lost in optimization of water distribution systems? A literature review of system operation. Environmental Modelling & Software 93 (2017) 209e254.
[20] Wang Y., Shi H. S., Wang J. and Zhang Y., (2015). Research and application of water resources optimized distribution model in Inter-Basin Water Transfer project. In: Applied Mechanics and Materials. Trans. Tech. Publ., vol. 737, pp. 683–687.
[21] Jain SK, Reddy NSRK, Chaube UC (2005) Analysis of a large inter-basin water transfer system in India. Hydrol Sci J 50(1) :125–137.
[22] Sadegh M, Mahjouri N, Kerachian R (2010) Optimal inter-basin water allocation using crisp and fuzzy shapley games. Water Resour Manag 24(10): 2291–2310.
[23] Salim S., B., (2013). Stochastic optimization of water transfer between dams. 2nd World Conference On Business, Economics and Management (WCBEM).
[24] Rani D, Srivastava DK, Gulati TR (2016) A set of linked optimization models for an inter-basin water transfer. Hydrol Sci J 61(2) :371–392.
[25] Yeh W. W. G., (1985). Reservoir management and operations models: A state-of-the-art review,” Water Resources Research, vol. 21, no. 12, pp. 1797-1818.
[26] Stuckman B., E., (1988). A Global Search Method for Optimizing Nonlinear Systems. IEEE. Transactions on Systems, Vol. 18. N°6.
[27] Needham J. T., Jr D. W., Lund J. R. and Nanda S. K., (2000). Linear programming for flood control in the Iowa and Des Moines Rivers. Water Resources Planning and Management, vol. 126, no. June, pp. 118-127.
[28] Li X., Wei J., Tiejian, Wang G. and Yeh W. W. G., (2014). A parallel dynamic programming algorithm for multir-reservoir system optimization. Advances in Water Resources, vol. 67, pp. 1-15.
[29] Pricea E., and Ostfelda A. (2014). Battle of Background Leakage Assessment for Water Networks Using Successive Linear Programing. 16th Conference on Water Distribution System Analysis, WDSA 2014.
[30] Belsnes MM, Wolfgang O, Follestad T, Aasgård EK. (2016). Applying successive linear programming for stochastic short-term hydropower optimization. Electr Power Syst Res 130:167–180.
[31] Xua Y., Wangb Y., Lia S., Huangc G., Dai C. (2017). Stochastic optimization model for water allocation on a watershed scale considering wetland’s ecological water requirement. Ecological Indicators.
[32] Xie Y.L., Xiaa D.X., Jib L. and Huangc G.H. (2017). An inexact stochastic-fuzzy optimization model for agricultural water allocation and land resources utilization management under considering effective rainfall. Ecological Indicators, doi: 10.1016/j.ecolind.2017.09.026.
[33] Cheng C, Shen J, Wu X, Chau K. (2012). Short-term Hydro-scheduling with discrepant objectives using multi-step progressive optimality Algorithm1. JAWRA J Am Water Resour Assoc 48(3):464–479. Doi. org/10.1111/j.1752-1688.2011.00628.x.
[34] Peng Y., Chu J., Peng A and Zhou H. (2015). Optimization-Operation Model Coupled with Improving Water-Transfer Rules and Hedging Rules for Inter-Basin Water Transfer-Supply Systems. Water Resour Manage. DOI 10.1007/s11269-015-1029-4.
[35] Feng Z., Niu W., Cheng C. and Wuc X. (2017). Peak operation of hydropower system with parallel technique and progressive optimality algorithm. Electrical Power and Energy Systems 94 (2018) 267–275.
[36] Ashofteh P, Haddad OB and Loáiciga HA. (2015). Evaluation of climatic-change impacts on multi-objective reservoir operation with multi-objective genetic programming. J Water Resour Plan Manag. 141(11):4015030.
[37] Behnam Vahdani B., Niaki S.T.A. and Aslanzade S. (2017). Production-Inventory-Routing Coordination with Capacity and Time Window Constraints for Perishable Products: Heuristic and Meta-heuristic Algorithms. PII: S0959-6526(17)31053-3. JCLP 9652. Journal of Cleaner Production. DOI: 10.1016/j.jclepro.2017.05.113.
[38] Marin A., and Pelegrin M. (2017). Towards unambiguous map labeling - Integer Programming approach and heuristic algorithm. PII: S0957-4174(17)30764-9. ESWA 11657. DOI: 10.1016/j.eswa.2017.11.014.
[39] Kennedy J. and Eberhart R., (1995). Particle swarm optimization. In: Proceedings of 2004 International Conference on Machine Learning and Cybernetics, pp. 1942–1948. IEEE Press.
[40] Engelbrecht, A. P. (2007). Computational intelligence: An introduction (2nd ed.). John Wiley and Sons.
[41] Parsopoulos, K.E., Plagianakos, V.P., Magoulas, G.D., Vrahatis, M.N. (2001). Stretching technique for obtaining global minimizers through particle swarm optimization. In: Proceedings of the Particle Swarm Optimization Workshop, Indianapolis, USA.
[42] Xu G. and Yu G. (2017). On convergence analysis of particle swarm optimization algorithm. Journal of Computational and Applied Mathematics. CAM 11356. PII: S0377-0427(17)30527-7. doi.org/10.1016/j.cam.2017.10.026.
[43] Martins, M. S. R., Fuchs S.C., Pando L.U., et al. (2013). PSO with path relinking for resource allocation using simulation optimization. Computers & Industrial Engineering, doi:10.1016/j.cie.2013.02.004.
[44] Ho S. L., Yang S., Ni G., and Wong H. C. (2006). A Particle Swarm Optimization Method with Enhanced Global Search Ability for Design Optimizations of Electromagnetic Devices. IEEE. Transactions on Magnetics, Vol. 42, N° 4, p1107-1111.
[45] Ye W., Feng W. and Fan S. (2017). A novel multi-swarm particle swarm optimization with dynamic learning strategy. Applied Soft Computing 61 (2017) 832–843.
[46] Chen Y., Li L., Peng H., Xiao J., (2017a). Dynamic multi-swarm differential learning particle swarm optimizer. Swarm and Evolutionary Computation BASE DATA. PII: S2210-6502(16)30538-7. SWEVO 319. DOI: 10.1016/j.swevo.2017.10.004.
[47] Lynn N., Ali M.Z. and Suganthan P. N. (2017a). Population topologies for particle swarm optimization and differential evolution, Swarm and Evolutionary Computation Base Data doi: 10.1016/j.swevo.2017.11.002.
[48] Machado-Coelho T.M., Machado L. (2017). An Interval Space Reducing Method for Constrained Problems with Particle Swarm Optimization. Applied Soft Computing. ASOC 4226. DOI: http://dx.doi.org/doi:10.1016/j.asoc.2017.05.022.
[49] Chen Y., Li L., Peng H., Xiao J. (2017b). Particle Swarm Optimizer with two differential mutations. Applied Soft Computing. PII: S1568-4946(17)30431-3. ASOC 4348. DOI: 10.1016/j.asoc.2017.07.020.
[50] Kiran M. S. (2017). Particle Swarm Optimization with a New Update Mechanism. Applied Soft Computing. DOI: 10.1016/j.asoc.2017.07.050.
[51] Marinaki M, Marinakis Y, Stavroulakis GE. (2011). Vibration control of beams with piezoelectric sensors and actuators using particle swarm optimization. Expert Syst Appl 38(6):6872–6883.
[52] Triguerosa D. E. G., Modenesb A. N., (2012). Reuse water network synthesis by modified PSO approach. Chemical Engineering Journal 183 (2012) 198– 211.
[53] Abdelaziz R. and Zambrano-Bigiarini M. (2014). Particle swarm optimization for inverse modeling of solute transport in fractured gneiss aquifer. J Contam Hydrol 164(0):285–298. Doi.org/10.1016/j. jconhyd.2014.06.003.
[54] Afshar A and Masoumi F. (2016) Waste load reallocation in river–reservoir systems: simulation–optimization approach. Environ Earth Sci 75(1): p1–14.
[55] Jiang Y., Liu C., Huang C., Wu X. (2010). Improved particle swarm algorithm for hydrological parameter optimization. Appl Math Comput 217(7):3207–3215.
[56] Ostadrahimi L., Mariño M.A., Afshar A. (2012). Multi-reservoir operation rules: multi-swarm PSO-based optimization approach. Water Resour Manag 26(2):407–427.
[57] Wang Q., Zhou H., Liang G. and Xu H. (2015). Optimal Operation of Bidirectional Inter-Basin Water Transfer-Supply System. Water Resour Manage (2015) 29 :3037–3054. DOI 10.1007/s11269-014-0905-7.
[58] Shourian M., Mousavi S. J. and Tahershamsi A. (2007). Basin-wide Water Resources Planning by Integrating PSO Algorithm and MODSIM. Water Resour Manage (2008) 22:1347–1366. DOI 10.1007/s11269-007-9229-1.
[59] Guo X., Hua T., Tao Zhang T. and Lv Y. (2012). Bi-level model for multi-reservoir operating policy in inter-basin water transfer-supply project. Journal of Hydrology. 424–425, p 252–263. DOI: 10.1016/j.jhydrol.2012.01.006.
[60] Zeng X., Hu T., Guo X. and Li X. (2014). Water Transfer Triggering Mechanism for Multi-Reservoir Operation in Inter-Basin Water Transfer-Supply Project. Water Resour Manage. DOI 10.1007/s11269-014-0541-2.
[61] Peng Y., Zhang X., et al., (2016). Multi-Core Parallel Particle Swarm Optimization for the Operation of Inter-Basin Water Transfer-Supply Systems. Water Resour Manage. DOI 10.1007/s11269-016-1506-4.
[62] Wan F., Yuan W. and Zhou J. (2016). Derivation of Tri-level Programming Model for Multi-Reservoir Optimal Operation in Inter-Basin Transfer-Diversion-Supply Project. Water Resour Manage. DOI 10.1007/s11269-016-1540-2.
[63] Mousavi S. J., Anzab N. R., Asl-Rousta B. and Kim J. H. (2017). Multi-Objective Optimization-Simulation for Reliability-Based Inter-Basin Water Allocation. Water Resour Manage. DOI 10.1007/s11269-017-1678-6.
[64] Guo X., Hu T., Wu C. et al., (2013). Multi-Objective Optimization of the Proposed Multi-Reservoir Operating Policy Using Improved NSPSO. Water Resour Manage (2013) 27:2137–2153. DOI 10.1007/s11269-013-0280-9.
[65] Direction des Aménagements Hydrauliques (DAH), (2017). Etude de conception du projet d’utilisation des eaux excédentaires des bassins du nord. Secrétariat d’Etat chargé de l’Eau - Maroc.